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Shear-induced migration of a viscous drop in a viscoelastic liquid near a 
wall at high viscosity ratio: Reverse migration 
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A B S T R A C T   

Wall-induced migration of a viscous drop in a viscoelastic fluid subjected to a plane shear is numerically 
simulated to investigate the effects of drop/matrix viscosity ratio. In a Newtonian system, drop migration away 
from the wall is inhibited as the viscosity ratio is increased. Here, we show that the introduction of the matrix 
viscoelasticity further decreases the migration and can even reverse its direction ‘from away’ to ‘towards the 
wall’, a phenomenon not seen in Newtonian systems. The migration towards or away from the wall eventually 
settles in a quasi-steady state that only depends on the instantaneous wall separation independent of the initial 
position of the drop. Drops migrating towards the wall initially increase their velocity, but as they approach the 
wall, they decelerate, showing a non-monotonic variation. The migration direction depends on the viscosity 
ratio, viscoelasticity (Deborah number), and the capillary number. We compute phase diagrams in the parameter 
space showing boundaries where migration changes direction. The critical Deborah number (at a fixed viscosity 
ratio) and the critical viscosity ratio (at a fixed Deborah number) for direction reversal approximately scales with 
the inverse of the capillary number.   

1. Introduction 

The motion of drops and particles plays a critical role in many in-
dustrial applications such as food and polymer processing as well as in 
biological flows [1, 2, 3, 4]. It can give rise to an inhomogeneous dis-
tribution of fillers in processed polymeric parts [5] and a cell-free layer 
close to the wall in blood vessels [6, 7, 8]. Recent developments in 
microfluidics have led to renewed interest in particle and cell migration 
studies where inertia, viscoelasticity, confinement, and particle size 
individually or jointly could influence, and therefore could be manipu-
lated to result in desired paths of suspended particles in the flow channel 
[9, 10, 11, 12, 13, 14]. Although migration of rigid particles in visco-
elastic medium has received much attention, the literature is meager for 
viscoelastic effects on drop migration [3]. Drop deformability can 
introduce lateral migration even in inertialess Newtonian flow [15, 16, 
17]. Deformability of particles can promote migration away from the 
wall in both viscous and viscoelastic medium where the latter seemed to 
reduce migration velocity and the migration velocity scales with the 
inverse square of instantaneous separation from wall [18]. Here, we 
extend our previous study of a viscosity-matched system to a high 

viscosity ratio system. 
Migration of a single particle in simple flow conditions can provide 

great insight into the physics of fluid suspension and help to design 
efficient active or passive cell sorting/particle focusing microfluidic 
devices [19, 20, 21, 22, 23]. It is well known that in absence of inertia, 
reversibility of Stokes flow prevents any lateral motion of a neutrally 
buoyant rigid sphere in a shear flow near a wall [24, 25, 26]. Revers-
ibility is broken by any one of several factors such as particle deform-
ability, viscoelasticity or inertia. Numerous studies have been devoted to 
the investigation of lateral migration of drops, capsules and particles in 
shear (see [27] for a review of the literature before 1980). Effects of 
viscoelasticity on migration, especially for rigid particles, as noted 
before have also been investigated by various groups [9, 10, 28, 29, 30, 
31, 32, 33, 34]. However, drop migration in presence of viscoelasticity 
has received very little attention [31]. 

Readers are referred to our previous article [18] for a detailed dis-
cussion of the migration literature. As noted above, the literature is 
extremely meager for viscoelastic effects on drop migration. There has 
only been a perturbative study in the limit of small deformation using a 
second-order fluid model [31]; it predicted that drop migration is 
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promoted by both drop and matrix phase viscoelasticity. Viscoelastic 
effects are often subtle and defy intuition, which is largely formed by our 
understanding of Newtonian fluid mechanics. The viscoelastic literature 
is fraught with contradictory findings—e.g. whether viscoelasticity in-
creases or decreases drop deformation in free shear [35, 36, 37, 38]— 
along with no standard viscoelastic constitutive equation. For particle 
migration, the reasoning advanced is often physical and heuristic as in 
the case of a sphere in a shear flow between parallel plates, where the 
difference of the viscoelastic forces on the upper and the lower hemi-
spheres was estimated to cause the lateral migration velocity with a 
cubic dependence on the blockage ratio of the particle [9, 34]. A similar 
theory balancing the drag force on a sphere with the viscoelastic force 
arising from the first normal stress difference varying with the local 
shear rate was used to explain the viscoelastic focusing seen in a 
microfluidic experiment with a polyvinyl pyrrolidone solution [11] as 
well as in a dilute DNA solution [21]. The deformable drop, as we noted 
before, introduces additional considerations. The situation demands 
careful analysis of canonical problems such as single drop migration 
with the simplest possible constitutive equations to help us understand 
the underlying physics. 

The drop migration, we showed, is caused by the velocity induced by 
a stresslet field created by the drop in presence of the wall [39]. In our 
previous article, we gave a detailed derivation of the stresslet-induced 
migration velocity using a Green’s function formulation including the 
viscoelastic contribution [18]. It clearly showed that the migration ve-
locity arises from three different effects—an interfacial contribution, a 
viscoelastic contribution, and a third contribution arising from 

non-unity viscosity ratio—the first of the three pushing drops away from 
the wall and the latter two pulling towards the wall. For the viscosity 
matched system, in the range of Deborah numbers investigated, 
although viscoelasticity hindered lateral migration away from the wall, 
it did not change the migration direction. Here, we lift the restriction on 
the viscosity ratio. We would show that a high enough ratio of the drop 
to the matrix viscosity can reverse the migration direction to towards the 
wall. Also note that for a Newtonian system, a BEM simulation [40] 
showed that the migration velocity of a drop for a high enough viscosity 
ratio displays a significant deviation from the analytical expressions 
obtained using a perturbation method [31]. Such considerations amply 
justify the present study. 

As in [18], we use a front tracking finite difference method and 
employ a modified version of the finitely extensible nonlinear elastic 
model due to Chilcott and Rallison (FENE-MCR) [41]. The model has 
one relaxation time, a constant shear viscosity and a positive first normal 
stress difference—all characteristics of a Boger fluid—and has been used 
in many viscoelastic studies[42, 43, 44, 45, 46]. The mathematical 
formulation and its numerical implementation are described in Section 
2. Section 3 presents and discusses the results of the simulation, followed 
by conclusion in Section 4. 

2. Mathematical formulation and numerical implementation 

The mathematical formulation underlying our computational tool 
for simulating drops with viscoelastic constitutive equations has been 
described in our recent publication [18]. The complete droplet matrix 

Fig. 1. (a) Schematic of the problem in two reference frames, (b) Drop position and migration velocity (inset) in two reference frames for Ca=0.2, De=0.5, λμ = 10 
(initially placed at the center of the domain (hi/a = 5.0, equidistance from both the walls). (c) Slip velocity, drop deformation (inset) and (d) migration velocity of a 
viscous drop in a viscoelastic fluid for three grid resolutions in two reference frames for Ca=0.2, De=0.5, λμ = 1.0 and initial position hi/a = 1.35. 
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system is governed by the incompressible momentum conservation 
equations: 

∂(ρu)
∂t

+∇⋅(ρuu) =∇⋅τ −
∫

∂B

dxBκnΓδ(x − xB), (1)  

∇⋅u = 0 (2)  

in the entire domain Ω. The total stress τ is decomposed into pressure, 
polymeric and viscous parts: 

τ = − pI + Tp + Tv, Tv = μsD, (3)  

where p is the pressure, μs is the solvent viscosity, and D = (∇u) +(∇u)T 

is twice the strain rate tensor. The superscript T represents the transpose. 
Tp is the extra stress (or viscoelastic stress) due to the presence of 
polymer. In Eq. (1) Γ is the interfacial tension (constant), ∂B represents 
the surface of the drop consisting of points xB, κ the local curvature, n the 
outward normal, and δ(x − xB) is the three-dimensional Dirac delta 
function. The FENE-CR constitutive equation in terms of the confor-
mation tensor A is given by [41] (see a detailed discussion of the method 
and its use in [18]): 

∂A
∂t

+ u⋅∇A = ∇u⋅A + A⋅(∇u)T
−

f
λ
(A − I) where f =

L2

L2 − tr(A)
(4) 

The relation between the stress Tp and conformation tensor Ais: 

A =

(
λ

μpf

)

Tp + I (5) 

Therefore, the stress constitutive equation becomes:  

where f =
L2 + λ

/
μp(
∑

Tp
ii)

L2 − 3
, (7) 

μp is the polymeric viscosity, λ is the relaxation time, and L is the 
finite extensibility. FENE-CR model introduces finite extensibility 
limiting the maximum length of the end-to-end vector for the polymer 
molecule. In the limit of L→∞ we obtain the Oldroyd-B equation. The 

terms fTp
[

∂
∂t (1/f)+u⋅∇(1/f)

]

are negligible in our simulations, and by 

dropping them we arrive at the FENE-MCR equation: 

∂Tp

∂t
+
{

u⋅∇Tp − ∇u⋅Tp − Tp⋅∇uT}+
f
λ
Tp =

f
λ
μpD. (8) 

By using an elastic and viscous stress splitting method used by [47], 
the viscoelastic stress can be expressed in the following form:  

A spherical drop of radius a is placed in a computational domain at t 
= 0 in close proximity—distance hi—to the bottom wall (equidistant 
from the side boundaries) (Fig.1a frame 2). Although the problem of 

interest is a simple shear flow near a wall, computationally one needs a 
finite computational domain of sufficiently large dimensions with con-
ditions imposed on the boundaries to simulate the shear flow. We choose 
the size to be Lx = 10a, Ly = 10a and Lz = 5a in the flow, gradient and 
the vorticity directions, which was shown to be sufficient in our previous 
investigations [15, 18, 48]. The upper plate (y-direction domain 
boundary) is impulsively started (in the x–direction) with a velocity U 
and the lower plate with a velocity -U at t = 0 creating a shear rate of γ̇ =

2U/Ly. Periodic conditions are imposed in the flow and the vorticity 
directions. The drop is described by a triangulated front distinct from the 
regular Cartesian grid used to solve the flow field; the front is adaptively 
regridded to prevent excessive distortion of the front elements. A 
multigrid method is used for the pressure Poisson equation, and an ADI 
method is used to alleviate the diffusion restriction on the time step. 
Other details can be found in previous papers [47, 49, 50, 51, 52, 53, 
54]. We use a and γ̇− 1 for non-dimensionalizing length and time scales 
respectively (with t′ = tγ̇). The dimensionless parameters are Reynolds 
number Re = ρma2γ̇ /μm capillary number Ca = μmaγ̇ /Γ, Deborah 
number De = λγ̇ (which for the present purpose is similar to the Weis-
senberg number), viscosity ratio λμ = μd /μm, density ratio λρ = ρd /ρm 
and β = μpm/μm—the ratio of the polymeric to the total drop viscosity. 
Additionally, the initial condition is characterized by the nondimen-
sional drop-wall separation hi/a. In the matrix, the viscosity is μm =

μsm + μpm, the sum of the solvent and polymeric viscosities. In all of our 
simulations, the density ratio has been kept fixed at a value of unity. We 
have chosen β = 0.9 and L = 20. In our previous study of the viscosity 
matched case, we found that the migration velocity become insensitive 
to L above this value [18]. Effects of β variation have been investigated 
in detail for the viscosity-matched system to show that the viscoelastic 
effects are largely governed by the product βDe [18]. The explicit nature 

of the code restricts us (despite the ADI implementation of the viscous 
terms) to a small non-zero Reynolds number which is kept at a value of 
0.03 where inertial effects are negligible. Effects of the top wall (a nu-
merical artifact) were investigated to find that for h/a < 3.5 dynamics 
remain independent of the top wall. Convergence of the viscoelastic 
algorithm used to simulate fluids with Oldroyd-B constitutive relation 
has been established for a number of drop dynamic problem-
s—deformation in shear flows [37, 38, 55], high viscosity ratio system 
[56], drop retraction [57] and sedimentation in quiescent fluid [58]. For 
the FENE-MCR relation, grid independence was investigated for shear 
induced drop migration in our previous paper [18]. In this study, we 
choose 128 × 128 × 64 discretization in the flow, gradient and vorticity 
directions (the effects of discretization is briefly discussed below). 

We note that in our previous studies [15, 18, 48], we imposed an 
impulsively started velocity 2U on the upper (y-directional) boundary 
and a zero velocity on the lower one to create the shear flow with the 

same rate γ̇ = 2U/Ly (Fig. 1a, frame 1). The two flows (frames 1 and 2) 
are equivalent under Galilean transformation, and therefore the physics 
remains the same in both (representing two different reference frames). 
However, note that numerically the drop shapes and motion are 

∂Tp

∂t
+
{

u⋅∇Tp − ∇u⋅Tp − Tp⋅∇uT}+ f Tp
[

∂
∂t
(1 / f )+ u⋅∇(1 / f )

]

+
f
λ
Tp =

f
λ
μpD. (6)   

(Tp)
n+1

=
[
(Tp)

n
−
(
μpD

)n]e− (f/λ)Δt +
(
μpD

)n
−

λ
f
[
u⋅∇Tp − ∇u⋅Tp − Tp⋅∇uT]n[1 − e− (f/λ)Δt]. (9)   
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determined by the movement of the mesh points on the front using ve-
locity interpolated from the 3D Cartesian grid, and therefore they are 
prone to numerical error of the particular discretization level. Such grid 
related issues resulting in the sensitivity of particle trajectory were also 
observed in finite element simulations of deformable particles in a 
channel flow [16], where a particle placed initially at the diagonal of a 
square cross-section didn’t exactly follow the diagonal line of the 
cross-section during lateral movement. Our choice in favor of the sym-
metric flow (frame 2 in Fig. 1a) is dictated by a numerical investigation 
of the results in two reference frames (Fig. 1). In Fig. 1(b), we see that a 
drop placed at the center of the domain, therefore expected to not move, 
shows a very small fluctuating initial lateral velocity, due to the drop 
deformation and initial adjustment. However, eventually, only the flow 
in symmetric frame 2 leads to a zero velocity preserving the imposed 
symmetry of the computational flow. The one in the asymmetric frame 
leads to small but finite positive lateral velocity. For the physical flow of 
interest here, the computational domain, as noted, is only a numerical 
artifact, and therefore the centerline is not of any significance. However, 
such numerical errors are to be avoided if possible. We also investigate a 
drop in close proximity to the lower boundary and compute the flow in 
two different reference frames at different discretization levels 64 × 64 
× 32 , 128 × 128 × 64 and 256× 256× 128. In Fig. 1(c), the slip ve-
locity (measured relative to the local shear velocity) and deformation (in 
the inset) plotted for the two reference frames don’t differ at the same 
discretization, both reducing with increased discretization. However, in 
Fig. 1(d), we note that although results in both reference frames even-
tually converge with increasing discretization, frame 2 converges faster. 
We therefore choose frame 2 with 128 × 128 × 64 discretization. 

3. Results 

In our recent study of a viscosity-matched system [18], we developed 
a theory of drop migration using Stokes Green’s function to show that 
the migration velocity is determined by the image stresslet field induced 
by the drop because of the presence of the wall. Accordingly, far from 

the wall, the migration velocity can be written as 

Ulat = −
1

8πμm

(
9

8h2

)
(
Sint

22 + Svrat
22 + SNN

22

)
, (10)  

where three different stresslet terms are 1) interfacial stresslet Sint
22arising 

from interfacial tension acting at the drop interface, a purely geometric 
term determined by the drop shape, 2) Svrat

22 arising due to non-unity 
viscosity ratio, and 3) SNN

22 arising from viscoelastic stresses around the 
drop (definitions of the S22’s are given in [18]). The matrix viscoelas-
ticity affects the migration in two competing ways. It decreases the drop 
inclination angle thereby increasing the interfacial contribution aiding 
migration, which however is outweighed by the direct inhibitory effect 
of the viscoelastic stresses resulting in a net reduction in migration ve-
locity. From the theory, it is clear that the second term due to the vis-
cosity ratio also inhibits migration at large viscosity ratios. Here, we 
investigate this effect of the viscosity ratio. Due to the rather small 
drop-wall distances considered here, the stresslet-based theory devel-
oped in [18] is not valid and therefore cannot be used for quantitative 
comparison. However, it helps us understand the results. 

3.1. Comparison with BEM solution and effects of Deborah number 

In our previous paper [18], we showed a very good comparison be-
tween our results—drop deformation and migration velocity for the 
Newtonian system of a viscosity matched drop in a wall-bounded 
shear—with those from BEM simulations [59] and theoretical expres-
sions of Chan and Leal [31] and Shapira and Haber [60]. In Fig.2 we 
consider the case of a high viscosity ratio of λμ = 10 at Ca=1.5 and hi/a 
= 1.5. We first consider a Newtonian case (De = 0) and compare the 
time evolution of lateral velocity, deformation and orientation angle 
with BEM simulation [40]. We use nondimensional time t′/Ca = tΓ/μma 
of the BEM article. The deformation shows oscillations and wobbly 
motion as is typical for high viscosity ratio drops. The inclination angle 
oscillates, but eventually decreases away from the extension axis of the 
shear at π/4 to align with the flow. The deformation and the inclination 
angle show excellent match between the two independent computations 
except at the initial period. The small discrepancy (between the blue and 
the red dotted curved) is due to the finite inertia (Re = 0.03) in our 
computation. However, they all show the same details of time-variation 
(magnitude and periodicity) albeit with slight variation in magnitudes, 
especially for the velocity. Note that unlike in BEM computation of 
Stokes flow, due to the finite inertia in our computation, it takes a finite 
time for the shear to establish after the impulsive start of the top 
boundary. For comparison with the BEM simulation, we have used a 
fully developed linear shear flow as the initial velocity field as opposed 
to fluid initially at rest impulsively started by the top and the bottom 
boundaries as in all other computations in the paper. 

In the same figure, we include a viscoelastic case—De = 0.25. 
Viscoelasticity increases deformation, changes inclination, and retards 
migration velocity. For De = 0.25, the velocity is negative and the drop 
moves towards the wall. Both higher viscosity ratio and viscoelasticity 
retard migration, but in combination, they here reverse the direction of 
migration. For the viscosity matched cases, within the range of Deborah 
numbers considered [18], we did not observe such a reversal. However, 
rigid spheres—which is retrieved for a drop in the limit of λμ→∞—were 
shown to migrate towards the closest wall in a shear flow [61]. 

In Fig. 3(a), we plot the evolution of the dimensionless distance of 
the drop from the wall for varying De at Ca = 0.2, λμ = 10, and hi/a =

1.5. With increasing viscoelasticity, the migration away from the wall 
gets retarded, and eventually reverses its direction to towards the wall at 
De= 0.5. Fig. 3(b) shows the same by plotting the migration velocity as a 
function of time. With increasing De, the drop is pulled more towards the 
wall. When the viscoelastic contribution can overcome the combined 
effect of interfacial and viscous stresses, the drop migrates towards the 
wall. Fig. 3(c) plots drop deformation and the angle of inclination as a 

Fig. 2. Lateral velocity, deformation and orientation angle for Ca = 1.5, λμ =

10, and hi/a = 1.5 are compared with BEM simulations of Uijttewaaal and 
Nijhof (UN). Dotted curves in color blue (our simulation) and red (BEM) are 
computed with initially fully developed shear for the viscous case (De = 0). The 
other two curves are with impulsively started flow for De =0 (solid) and De =
0.25 (dash). 
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function of time for different De with other parameters kept the same. 
The deformation increases with increasing viscoelasticity due to visco-
elastic stretching as well as the drop being nearer to the wall experiences 
a higher local strain rate. Previous numerical studies described the 
importance of inclination angle in migration [40]. At this high λμ = 10, 
the inclination angle even for a Newtonian case is quite small, 19◦. The 
decrease in angle with increasing Deborah number considered here is 

not too large (12◦~16◦). Slip velocities (Fig. 3d) show that during the 
transient phase, there is an overshoot and for higher De, the value can 
become positive i.e., the drop leads the flow. This is only temporary, and 
a quasi-steady state is reached where slip velocities are negative and do 
not vary significantly with Deborah number. The drop deformation is 
computed from the farthest and the nearest points on the drop interface, 
which in turn is evolved by velocities interpolated on the front vertices 
from the field in the Eulerian grid. This numerical procedure gives rise to 
the slight lack of smoothness seen in some of the curves in Fig. 3(c) and 
in other figures below. 

In Fig. 4, we investigate lateral migration as a function of separation 
from the wall with drops initially placed at different initial heights from 
the wall. Three cases, De = 0, 0.25 and 0.75 are considered. As we saw in 
the viscosity matched system, the curves for different initial heights 
eventually collapse on each other indicating quasi-steady dynamics in-
dependent of the initial condition. For the Newtonian and the De = 0.25 
cases, the quasi-steady velocities are positive. However, for De = 0.75, 
the drop has a negative velocity. For the latter case, as the drop ap-
proaches the wall, around h/a = 1.1, the velocity almost reaches zero. 
The transients are different in the three cases. For the Newtonian and De 
= 0.25, the velocity initially increases and then settles down as the 
quasi-steady state is reached. For De = 0.75, the curve looks similar 
except that the velocity, as mentioned, remains negative. 

3.2. Effects of viscosity ratio and capillary number 

Increasing the viscosity ratio λμ has two well-known effects on the 
drop geometry—the deformation decreases and the drop gets increas-
ingly aligned with the flow. In Fig. 5(a), we plot the evolution of drop 

Fig. 3. Drop migration for varying De for Ca = 0.2, λμ = 10 and hi/a = 1.5: (a) Drop height , (b) lateral migration velocity, (c) deformation and inclination angle, 
and (d) slip velocity. 

Fig. 4. Lateral migration velocity as a function of the distance from the wall for 
Newtonian and viscoelastic cases for Ca = 0.2, λμ = 10 and varying De. 
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height for Ca = 0.2, De = 0.75 and hi/a = 1.5 with varying viscosity 
ratios. The drop initially experiences a negative migration velocity for 
all λμ (seen clearly in the inset) moving towards the wall but later they 
settle either for migration away from the wall for λμ < 6.0, or towards 
the wall for larger λμ>6.0. Fig. 5(b) shows very little effects of viscosity 
ratio on slip velocity evolution. 

Fig. 6 plots the lateral velocity as a function of λμ (in the quasi-steady 
state) for Ca=0.2 and two Deborah numbers. For a particular height, the 
curves for two De are almost parallel to each other. Given the analytical 

Fig. 5. (a) Non-dimensional height vs. time for Ca = 0.2, De = 0.75, and hi/a = 1.5. The inset shows the time variation of lateral velocity. (b) Time evolution of slip 
velocity for the same parameters. 

Fig. 6. Quasi-steady migration velocity as a function of viscosity ratio, at two 
different Deborah numbers and h/a (legends are same as in the inset) for Ca =
0.2. Inset shows the same scaled by (a/h)2. 

Fig. 7. Evolution of the non-dimensional drop height for different capillary and 
Deborah numbers and λμ = 10. 

Fig. 8. (a) Quasi-steady velocities plotted vs. drop height for Ca = 0.05 and 
De= 0.75 for different viscosity ratios. (b) Shapes of drops (horizontal position 
is arbitrary) migrating towards the wall (black line) at successive time instants 
for De = 0.75, Ca = 0.05, hi/a = 1.5,λμ = 10 (top) and De = 0.75, Ca = 0.2, hi 
/a = 1.5, λμ = 20 (bottom). 
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theory [18, 31] that predicts Ulat/γ̇a ∼ Ca(a/h)2, in the inset we plot 
Ulat(a/h)2

/γ̇a to show that the scaling is only approximate (as was also 
seen in the viscosity matched system [18]). For a Newtonian case, 
Uijttewaaal and Nijhof [40] also observed that the scaling does not hold 
exactly except at small Ca ∼0.1 and large wall separation h/a ∼20. 
Increasing capillary number increases drop deformation promoting 
migration away from the wall. Increasing matrix viscoelasticity pushes 
the drop towards the wall reducing the validity of the scaling law. 

In Fig. 7, we plot the time evolution of drop heights for three 
different capillary numbers and two Deborah numbers at λμ = 10. At the 
lower Deborah number De = 0.35, the drop migrates away from the wall 
for Ca = 0.2, Ca =0.1 and Ca = 0.05, migration speed decreasing with 
decreasing Ca. At De = 0.75, the drop migrates towards the wall for all 
three Ca values, the absolute speed of migration increasing with 
decreasing Ca. 

Fig. 8(a) plots migration velocity for Ca = 0.05, De = 0.75 and 
varying viscosity ratios, where the drop migrates towards the wall. As 
the drop approaches the wall, the absolute value of the velocity first 
increases, reaches a maximum, and then decreases. The maximum ve-
locity magnitude increases with increasing viscosity ratio, with the 
location shifting slightly towards the wall. The velocity maximum can be 
explained by noting the following fact. The presence of the wall is the 
cause of drop migration; far away from the wall the wall-ward migration 

velocity is small and increases as the drop approaches the wall. How-
ever, the motion is finally impeded close to the wall, and the migration 
velocity has to eventually decrease to zero. Therefore, in its approach to 
the wall, the absolute velocity would pass through a maximum. The 
curves have been averaged to eliminate slight oscillations arising due to 
the numerical issues noted while describing Fig. 3(c) further aggravated 
by the numerical differentiation of the position to compute the velocity. 
At proximity to the wall, the drop shape is affected by the wall, lubri-
cation forces in the small gap are strong, and the drop experiences strong 
deformation. Figs. 8(b) shows drop shapes and heights (but not correct x 
positions) at some consecutive times for two different viscosity ratios. 
The drop assumes flattened shapes effectively lowering the height of its 
center of mass. 

In Fig. 9, we plot the migration velocity as a function of capillary 
number at an instantaneous height h/a = 1.4 for different De values. 
With increasing Ca, migration velocity initially increases, reaches a 
maximum and then slightly reduces. Note that the previous BEM 
simulation [40] also showed such nonmonotonicity at high viscosity 
ratios. The deviation from the analytic result Ulat/γ̇a ∼ Ca(a/h)2 can be 
seen clearly in the inset where the migration velocity divided by capil-
lary numbers is plotted. The viscoelastic curves follow a similar trend 
with velocity decreasing and eventually becoming negative with 
increasing De. 

3.3. Phase diagrams for positive and negative migration 

We have found that increasing viscoelasticity and viscosity ratio 
promotes migration towards the wall, whereas increasing capillary 
number pushes it away from the wall. The competition governs the 
dynamics and results in either a positive or a negative migration velocity 
for the drop. In this section, we present phase diagrams determining the 
regions in this parameter space for these two behaviors. Fig. 10(a) plots 
the phase diagram for Ca and λμ for drops initially positioned at hi/a =

1.5 and De = 0.75. Each symbol represents a simulation; upward tri-
angles represent drops eventually going away from the wall and 
downward triangles represent moving towards the wall. As Ca is 
increased, a higher value of viscosity ratio is required to make the drop 
migrate down towards the wall. The color contour shows the migration 
velocity positive i.e., away from the wall for more deformable drops and 
low viscosity ratios, reducing velocity as viscosity ratio λμ is increased 
and Ca decreased, eventually reversing direction towards the wall. An 
approximate linear relation λμ,critical ∼ Ca− 1 is noticed between the in-
verse of capillary number and the viscosity ratio. Fig. 10(b) plots a 
similar phase diagram in De-Ca space for hi/a = 1.5 and λμ = 10. The 
drops above the green line (downward triangles) eventually migrate 

Fig. 9. Lateral migration velocities plotted for λμ = 10 and at instantaneous 
height of 1.4a to show Capillary variation of lateral velocities for different 
Deborah numbers. Inset shows the lateral velocities divided by Ca. 

Fig. 10. Phase diagrams for the direction of drop migration: (a) In λμ-Ca space forDe = 0.75 and hi/a = 1.5. (b) In De-Ca space for λμ = 10, hi /a = 1.5. Drops below 
the green lines migrate away from the wall and those above migrate towards the wall. The color contour describes the migration velocity. 
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towards the wall, and those below (upward triangles) migrate away 
from the wall, showing here also an approximately linear relation 
Decritical ∼ Ca− 1. In both figures, away from the phase boundaries the 
velocity magnitudes increase. Note that the stresslet theory and the 
phenomenological relation for migration both predicted Ulat 
/γ̇a ∼ (K1Ca − K2De − K3CaDe) [18]. Neglecting the third term for small 
Ca gives Decritical ∼ Ca− 1 for zero migration velocity. 

4. Conclusions 

Following our recent numerical investigation of the migration of a 
viscosity-matched viscous drop in a viscoelastic matrix [18], in this 
paper, we investigate the same phenomenon for high drop to matrix 
viscosity ratios. Our earlier investigation showed that matrix visco-
elasticity retards migration of a drop away from the wall—the effect 
stemming from the viscoelastic normal stresses along the curved 
streamlines around the drop. Here, we see that at high viscosity ratios, 
strong enough viscoelasticity can reverse the migration direction from 
away from the wall to towards the wall. The migration velocity even-
tually becomes quasi-steady depending only on its instantaneous sepa-
ration from the wall. For drops migrating towards the wall, their 
approach velocity shows a non-monotonic variation with the distance 
from the wall. The slip velocity is briefly investigated to show that it is 
not a strong function of λμ. 

We noted in our previous work, that the migration is caused by three 
distinct effects—an interfacial term, a viscosity ratio term and a visco-
elastic term, the latter two inhibiting the migration away from the wall 
caused by the first one. The competition between the three determines 
the direction of the migration. With numerous simulations varying De, 
Ca and λμ, we obtain phase diagrams showing the critical values of pa-
rameters that distinguish migration direction towards or away from the 
wall. The critical parameters show approximate relations: λμ,critical ∼

Ca− 1 for a fixed De, and Decritical ∼ Ca− 1 for a fixed λμ. Note that in an 
emulsion with multiple drops, migration along with shear-driven colli-
sion determines the final drop distribution—a phenomenon that has 
been studied for Newtonian systems [62, 63]. The wall-ward migration 
presented here indicates fundamentally different physics for viscoelastic 
emulsions and warrants further investigation. 
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